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Abstract

We provide the first causal evidence that congestion pricing induces asymmetric tempo-
ral substitution exclusively at specific pricing boundaries. Using New York City’s January
2025 implementation and high-frequency establishment-level mobility data, we employ a
Difference-in-Discontinuities design testing multiple potential thresholds. We find a statisti-
cally significant 5.75% temporal shift only at the 5AM weekday boundary (p < 0.05), with
precisely estimated null effects at all other transitions including both weekend boundaries.
This sharp concentration at a single threshold robust to bandwidth selection and alternative
treatment date reveals that temporal substitution requires precise alignment between pric-
ing boundaries and latent schedule flexibility. Despite limited behavioral change at only one
of four pricing boundaries, non-linear traffic flow relationships translate this 5.75% shift into
substantial congestion relief. These findings challenge standard congestion pricing models
that assume symmetric schedule delay costs and suggest that program effectiveness depends

primarily on trip elimination and modal substitution rather than temporal redistribution.
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1 Introduction

Traffic congestion imposes enormous costs on the U.S. economy. Americans lose 8.8 billion
hours and $190 billion annually sitting in traffic, with particularly severe impacts in dense urban
areas'. In Manhattan, average traffic speeds fell to just 7.1 mph by 2024 slower than walking
pace?. Economists have long advocated congestion pricing as the solution, dating back to Pigou
( ), yet political opposition prevented any U.S. city from implementing it until now. On
January 5, 2025, New York City launched the nation’s first congestion pricing program, charging
vehicles entering Manhattan below 60th Street with time-varying tolls designed to shift travel
away from peak hours. This provides a rare opportunity to examine how road pricing affects
travel behavior in a major U.S. metropolitan area?.

This policy change raises three key questions. First, will commuters actually shift when they
travel to avoid peak prices, or are work schedules too rigid? Second, do behavioral responses
differ across industries can retail workers adjust their schedules more easily than office workers?
Third, what happens to surrounding areas do they benefit from less through-traffic, or do they
suffer when economic activity moves elsewhere?

We answer these questions using high-frequency data on visits to individual businesses using
mobile-location data. Our empirical approach exploits the sharp timing and geographic bound-
aries created by the toll policy to identify causal effects. We examine both whether trips shift
to different times of day and whether economic activity shifts to neighboring areas outside the
toll zone.

Our main findings challenge common assumptions about congestion pricing. Despite the
large price difference between peak and off-peak hours, we find that trips shift to earlier times
at only one boundary: 5AM on weekdays, where 5.75% of trips move to before 5AM to avoid the
toll. Surprisingly, we see no response at 9PM on weekdays or at any weekend boundary. This
pattern holds even when we test different boundary times, suggesting that schedule flexibility
exists only at very specific times likely when some workers start their shifts before standard
business hours begin.

We also document important spillover effects to neighboring areas. Upper Manhattan (north

of 60th Street, outside the toll zone) sees more visitors after the policy starts, especially to retail

'INRX 2024 report - INRX is an analytics company working on road and traffic analysis.

2Using taxi and for-hire vehicle speed data analyzed by former city Traffic Commissioner Sam “Gridlock Sam”
Schwartz revealed that average speeds in the Central Business District dropped below 7 miles per hour for 2024.
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stores and restaurants, suggesting people substitute to these closer destinations. In contrast,
businesses in New Jersey show parallel declines to those in the toll zone, indicating that these ar-
eas are economically linked rather than substitutes. Brooklyn and Queens show mixed patterns:
retail gains some traffic while professional services decline.

These results matter for both policy and theory. For policy, These findings have immedi-
ate policy relevance as cities from Los Angeles to London debate congestion pricing designs.
The limited temporal shifting suggests revenue projections may be conservative if they assume
widespread schedule changes. The industry differences reveal unexpected distributional effects:
service workers with flexible schedules can avoid tolls, while office workers with fixed schedules
cannot. The geographic spillovers indicate that neighboring jurisdictions may need their own
policy responses to address displaced activity.

For economic theory, the asymmetric responses and threshold effects suggest that standard
models assuming smooth optimization may miss important features of commuting behavior.
Institutional constraints work start times, school schedules, business hours—appear to bind at
specific times rather than allowing continuous adjustment. Understanding these constraints is
crucial as more cities consider congestion pricing to address traffic, pollution, and climate goals.

The remainder of this paper proceeds as follows. Section 2 describes the policy details and
literature. Section 3 explains the our data and how we have used it. In Section 4 we presents
our empirical strategy using the geographic and temporal variation considering cut-off around
the congestion window. Section 5 shows the main results on temporal substitution and spatial

spillovers. Section 6 discusses policy implications.

2 Background and Literature Review

On 5 January 2025, New York City launched the nation’s first congestion pricing program.
The NYC - Metropolitan Transportation Authority Central Business District Tolling Program
charges vehicles entering Manhattan south of 60th Street represented in Figure 1, with a sophis-
ticated time-varying structure. During peak hours (5bAM-9PM weekdays, 9AM-9PM weekends),
passenger vehicles with E-ZPass* pay $9, while off-peak hours cost $2.25 a 300% price differ-

ential designed to incentivize temporal substitution. The program includes nuanced features:

1E-ZPass is an electronic toll collection system used on toll roads, bridges, and tunnels in several U.S. states.
It allows drivers to pay tolls automatically through a pre-paid account linked to a transponder in the vehicle,
enabling travel through designated lanes without stopping for cash payments.



higher rates for vehicles without E-ZPass ($13.50 peak), differentiated charges by vehicle size
(trucks pay up to $21.60), per-trip fees for taxis ($0.75) and rideshares ($1.50), daily caps to
limit burden on frequent users, and crossing credits for tolled tunnels. The MTA projects that
this will reduce traffic by 17% while generating $15 billion for transit improvements®

The economic theory of congestion pricing originates from the fundamental insight Pigou
( ) that road users impose externalities through their contribution to traffic congestion.
Vickrey ( ) formalized this intuition in the bottleneck model, demonstrating how time-
varying tolls could achieve efficient allocation of scarce road capacity. Subsequent theoretical
developments of Arnott et al. ( ) and Small ( ) incorporated schedule delay costs into
the framework, modeling commuter decisions as a trade-off between travel time costs, early

arrival penalties (/3), late arrival penalties () and monetary tolls:

C(t)=a-t+ - -max(0,t" —t) + v -max(0,t —t*) + 7(¢) (1)

A critical assumption underlying these models is that schedule delay costs are symmetric
and continuous throughout the day, implying smooth temporal substitution patterns in response
to price variations. However, this theoretical prediction has remained largely untested due to
data limitations and identification challenges in real-world implementations.

The empirical literature on congestion pricing has focused predominantly on aggregate out-
comes rather than behavioral mechanisms. London’s congestion charge, implemented in 2003,
reduced traffic volumes by 15-20% Green et al. ( ) and Leape ( ), generated measurable
improvements in air quality Tang and van Ommeren ( ) and reduced private car ownership
Morton and Ali ( ). Stockholm’s trial period and subsequent permanent implementation
showed similar aggregate reductions of 20-22% Borjesson et al. ( ) and Eliasson et al. ( ),
with associated health benefits and road safety documented by Albalate and Fageda ( ) and
Simeonova et al. ( ). Milan’s Area C reduced traffic by approximately 12% while improving
air quality within the charging zone and influences vehicle choice Gibson and Carnovale ( )
and Moulin and Urbano ( ). Singapore’s long-running electronic road pricing system has
demonstrated price elasticities of demand ranging from -0.2 to -0.3 Olszewski and Xie ( )
Although these studies establish that congestion pricing reduces aggregate traffic volumes, they

cannot disentangle whether reductions occur through trip elimination, modal substitution, or
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temporal redistribution distinctions crucial for both theoretical understanding and policy de-
sign.

Recent contributions have begun to examine heterogeneous responses to congestion pricing,
although data constraints have limited the scope of analysis. Hall ( ) demonstrates welfare
gains from HOT lanes, but cannot observe the variation at the industry level. Yang et al. ( )
use Beijing’s license plate restrictions as a quasi-experiment to estimate congestion costs but
lack temporal granularity to identify substitution patterns. Kreindler ( ) provides experi-
mental evidence from Bangalore showing heterogeneous values of time across commuters, while
Hall ( ) develops a theoretical framework for understanding distributional consequences.
However, these studies lack the establishment-level, high-frequency data necessary to identify
specific behavioral mechanisms.

The distributional implications of congestion pricing have generated substantial policy de-
bate, with concerns that tolls may disproportionately burden lower-income travelers Ecola and
Light ( ) and Taylor ( ). Eliasson and Levander ( ) examine equity effects in Stock-
holm, finding that high-income groups pay more in absolute terms but experience larger time
savings. Yet the literature has overlooked industry-level heterogeneity, despite its importance
for understanding incidence and adjustment mechanisms. Professional service workers with
fixed schedules face different constraints than retail or hospitality workers with variable shifts,
yet no study has systematically documented these differences or their implications for policy
effectiveness.

Evidence on spatial spillovers from congestion pricing remains limited and contradictory.
Herzog ( ) finds that London’s congestion charge reduced traffic on non-priced roads lead-
ing into the charging zone, suggesting complementarity between priced and unpriced roads.
Conversely, Gibson and Carnovale ( ) document increased traffic on Milan’s radial roads
outside the pricing zone, indicating substitution. These conflicting findings highlight the need
for systematic analysis across multiple geographic areas within a single metropolitan region to
understand when spillovers are positive versus negative.

Methodologically, the congestion pricing literature has relied primarily on before-after com-
parisons Leape ( ) or synthetic control methods Duranton and Turner ( ) that cannot
separately identify different behavioral margins. Recent advances using regression discontinu-
ity designs have focused on geographic boundaries Fu and Gu ( ) rather than temporal

thresholds where pricing changes occur. The inability to exploit temporal discontinuities has



prevented researchers from testing fundamental theoretical predictions about schedule flexibility
and temporal substitution.

Our study addresses these gaps through several innovations. First, we provide empirical
evidence that schedule delay costs exhibit fundamental asymmetries not captured in standard
models, With Brorning 7# Bevening and temporal substitution occurring exclusively at morning
boundaries. The finding that effects vanish when shifting the discontinuity by a single hour
reveals threshold effects rather than the smooth substitution patterns predicted by theory. Sec-
ond, using establishment-level data with hourly frequency across three-digit NAICS industries,
we decompose aggregate treatment effects into specific behavioral margins documenting that
temporal substitution affects only 5.75% of trips at one boundary while industry responses
vary by an order of magnitude. Third, we systematically analyze spillover patterns across
five separate jurisdictions (Upper Manhattan, Bronx, Brooklyn, Queen and Hudson County)
within the New York metropolitan area, revealing that complementarity versus substitutabil-
ity depends predictably on both geographic proximity and industry characteristics. Fourth,
our Difference-in-Discontinuities design exploiting both temporal and spatial variation provides
cleaner identification than previous approaches, while our descriptive analysis with demeaning
methodology transparently isolates treatment effects from pre-existing heterogeneity. These
contributions advance both theoretical understanding and practical knowledge necessary for

optimal congestion pricing design.

3 Data

We use a balanced panel dataset high-frequency mobility patterns (foot-traffic) at establish-
ment. We also used characteristics like NAICS code (2017) to identify the sectors. The primary
data source is anonymized mobile-device location data from Advan, tracking visits to com-
mercial establishments (POI) using GPS-pings. Many studies in public health Andersen et al.
( ), Dave et al. ( ), Goolsbee and Syverson ( ), and Mongey et al. ( ), marketing
Banerjee et al. ( ) and Hou and Poliquin ( ) or urban transportation Coleman et al.
( ), Goodspeed et al. ( ), and Wang et al. ( ) have extensively used these datasets
to understand the policy effects. We use this data from 1st July 2023 through 30th June 2025
provides 18 months of pre-treatment and 6 months of post-treatment observations.

The sample comprises approximately 24,700 continuously operating establishments within



Manhattan’s Congestion Relief Zone (south of 60th Street) and over 46,000 comparable estab-
lishments across control cities. Control locations were selected based on similar urban density,
economic composition, and transportation infrastructure: Boston (primary control with 15,234
establishments), Brooklyn (8,745), Queens (7,234), Bronx (5,423), Upper Manhattan above
60th Street (10,234), and Hudson County, NJ.

Industry classification uses three-digit NAICS codes, covering 72 industries with establish-
ments ranging from single-digit counts in specialized manufacturing to over 3,800 in food ser-
vices. Table 1 presents the distribution of establishments across key sectors, along with baseline
activity levels. We exclude industries with inherent schedule rigidities unrelated to congestion
pricing (ambulatory health care, hospitals, nursing care, religious organizations, justice/safety,

national security, and air transportation).

Table 1: Sample composition and baseline activity across treatment and control areas

Manhattan (CZ) Boston
Sector (NAICS) N Mean (SD) N Mean (SD)
Retail Trade
Motor Vehicle (441) 63 9.04 (0.22) 85 9.39 (0.13)

Food & Beverage (445) 613 10.70 (0.17) 412 11.10 (0.18)
Clothing Stores (448) 2,807 11.90 (0.20) 1,847 12.30 (0.17)

Services

Finance (522-524) 2,627 11.03 (0.21) 1,623 11.10 (0.22)
Professional (541) 3254 12.00 (0.21) 1,847  11.90 (0.21)
Accommodation & Food

Food Services (722) 3,864 12.30 (0.17) 2,156  12.70 (0.18)
Total 24,704 10.47 (0.19) 15,234 10.52 (0.19)

Notes: Manhattan (CZ) denotes the Congestion Zone (treatment area south of 60th Street). N = number of
establishments. Mean and SD represent log visitors during baseline period (2024). Full table with all sectors
and control areas available in Appendix 5.

4 Empirical Strategy

Our identification strategy combines regression discontinuity and difference-in-differences ap-
proaches to create a Difference-in-Discontinuities (DiD-RD) framework. This design is necessary
because a simple regression discontinuity at toll boundaries would conflate the causal effect of
congestion pricing with natural discontinuities in activity patterns. For instance, even without
congestion pricing, we might observe increased visits at 5AM as businesses naturally open for

the day. The observed jump at any boundary therefore contains both a natural component and,



potentially, a pricing-induced component that we aim to isolate.

The core insight of our approach is that while both Manhattan and control cities experi-
ence natural discontinuities in activity at certain hours, only Manhattan’s discontinuities should
change after congestion pricing implementation. By comparing how the magnitude of disconti-
nuities evolves in Manhattan relative to control cities, we isolate the causal effect of the pricing
policy. This triple difference across time of day, across cities, and across implementation peri-
ods provides our identifying variation. In Figure 2, we present a visual temporal evolution of
establishment visits across four panels showing similar weekday and weekend patterns before
and after implementation.

We estimate the following equation using Poisson Pseudo-Maximum Likelihood:

E[Yepar| X] = exp (ﬂchpt + F(RR) + > WXk + Sar + Ocn + 6chdt> (2)
k

The outcome variable Y4 represents unique visitor counts for city ¢ at hour h on date d in
period t. We use counts rather than logs because many establishments record zero visits during
overnight hours, and dropping these observations would create selection bias. The exponential
link function ensures predicted values remain positive while accommodating the multiplicative
nature of the effects we study.

The key identifying variable is the triple interaction D, = M. x F}j, x Py, where M, indicates
whether the establishment is in Manhattan’s congestion zone, F}, denotes free or discounted toll
hours, and P; marks the post-implementation period. For the 5AM boundary analysis, Fj
equals one for hours 0-4 when tolls are $2.25 and zero for hours 5-10 when tolls are $9.00.
The coefficient 1 on this triple interaction identifies our causal effect of interest the change
in visits during free hours relative to peak hours, in Manhattan relative to control cities, after
implementation relative to before.

A critical component of our specification is the flexible control function f(Rjy) for the running
variable, which measures the distance from the threshold hour. For the 5AM boundary, Rj, =
h — 5, ranging from -5 to +5 across our analysis window. We include not only the running
variable itself but also its interactions with all components of the triple difference. This rich
set of interactions serves several purposes. The interaction of the running variable with the
Manhattan indicator allows the two cities to have different hourly patterns as Manhattan might

naturally see steeper increases in morning activity than Boston. The interaction with the free



hours indicator permits different slopes on either side of the discontinuity, accommodating any
natural kink in activity patterns at 5AM. The interaction with the post period allows these
hourly patterns to evolve over time for reasons unrelated to congestion pricing.

Our specification includes two sets of high-dimensional fixed effects that absorb potential
confounders. Date fixed effects d4 control for any shocks common to all cities on a given
day, including weather events, holidays, national economic conditions, or day-of-week patterns.
These ensure that we compare Manhattan and control cities within the same day, eliminating
concerns about temporal confounders. City-by-hour fixed effects 6., absorb all time-invariant
differences in hourly patterns across locations. Manhattan’s 4AM activity level might per-
manently differ from Boston’s due to differences in urban density, industrial composition, or
cultural factors. These fixed effects ensure we identify our effect from changes over time rather

than cross-sectional differences.

5 Main Results and Discussion

Table 2 presents our primary results examining temporal substitution at each pricing boundary.

The specification includes the full set of interactions and controls described in the empirical

strategy.
Table 2: Temporal substitution effects at congestion pricing boundaries
Weekdays Weekends
Specification 5AM 9PM 9AM 9PM
($2.25—%9.00) ($9.00—%2.25) ($2.25—%$9.00) ($9.00—$2.25)
Manhattan x Free x Post 0.0575%* -0.0253 0.0083 0.0069
(Triple Interaction) (0.0268) (0.0356) (0.0332) (0.0621)
95% CI [0.005, 0.110]  [-0.095, 0.045]  [-0.058, 0.074]  [-0.115, 0.129]
Implied elasticity -0.024* 0.014 -0.003 -0.004
Observations 7,634 4,164 3,036 1,656
Pseudo R? 0.967 0.922 0.971 0.930

Notes: Poisson Pseudo-Maximum Likelihood estimates. Standard errors (in parentheses) clustered at date level.
All specifications include date and city x hour fixed effects, full interaction terms, and flexible polynomials in the
running variable. *p < 0.10, **p < 0.05, ***p < 0.01.

The results reveal a striking asymmetry in temporal responses. The 5AM weekday boundary
shows a statistically significant 5.75% increase in overnight visits (p=0.032), while all other
boundaries yield economically small and statistically insignificant effects. The 95% confidence

intervals rule out effects larger than +7.5% at evening and weekend boundaries, providing



precise evidence of null effects.

5.1 Robustness to Alternative Discontinuity Points

The exceptional nature of the 5AM effect becomes clear when shifting the discontinuity by
one hour. Table 3 shows that at 6AM despite facing an identical $6.75 price jump temporal
substitution vanishes completely (5 = -0.0007, SE = 0.0204). Similarly, testing 4AM yields no
significant effect (8 = 0.0302, SE = 0.0449). This sharp threshold indicates temporal substi-
tution occurs only within extremely narrow windows where pricing incentives align with latent
schedule flexibility.

Table 3: Testing alternative pricing boundaries

Actual One Hour One Hour

Boundary Earlier Later
Weekday Morning ($2.25—89.00)
Time tested 5AM 4AM 6AM
Triple interaction 0.0575%* 0.0302 -0.0007
Standard error (0.0268) (0.0449) (0.0204)
Result Significant Not significant  Precisely zero
Weekday Evening ($9.00—3$2.25)
Time tested 9PM 8PM 10PM
Triple interaction -0.0253 0.0070 0.0026
Standard error (0.0356) (0.0302) (0.0258)
Result Not significant Not significant Not significant

Notes: Each coefficient from separate regression with full controls. *p < 0.10, **p < 0.05, ***p < 0.01.

5.2 Placebo Test for Pre-existing Trends

To validate our identifying assumption that the temporal substitution patterns emerged specif-
ically in response to the congestion pricing policy, we conduct a placebo test by artificially
shifting the policy implementation date to earlier periods when no actual policy change oc-
curred. Table 4 presents results from re-estimating our main specification using placebo event
dates six months and one year prior to the actual implementation. The coefficient on our triple
interaction term (Manhattan X Free hours x Post-policy) remains positive but becomes sta-
tistically insignificant across all time boundaries examined. For instance, at the 5AM weekday
boundary, the coefficient drops from 0.033 in our main specification to 0.0142 (SE = 0.0298)

when using the placebo date of September 5th 2024. This pattern preserved sign but loss of

10



statistical significance is consistent across all four temporal boundaries, with none of the placebo
coefficients achieving even marginal significance at the 10% level. These null findings serve two
important purposes. First, they demonstrate the absence of differential pre-trends in temporal
substitution behavior between Manhattan and our control cities prior to the actual policy imple-
mentation, supporting the parallel trends assumption underlying our difference-in-discontinuity
design. Second, the reduction in magnitude and precision of the estimates provides reassurance
that our main results are not artifacts of secular trends in travel patterns or other confounding
temporal dynamics. The fact that the treatment effect emerges precisely when the congestion
pricing policy takes effect, and not before, strengthens our causal interpretation of the observed

temporal displacement as a behavioral response to the price differential at zone boundaries.

Table 4: Temporal substitution effects at congestion pricing boundaries if the date on event is
September 5th 2024

Weekdays Weekends

Specification 5AM 9PM 9AM 9PM

($2.25—%$9.00) ($9.00—%2.25) ($2.25—%$9.00) ($9.00—$2.25)
Manhattan x Free x Post 0.0333 0.0215 0.0186 0.0564
(Triple Interaction) (0.0252) (0.0373) (0.0338) (0.0547)
95% CI [-0.016, 0.083]  [-0.052, 0.095]  [-0.048, 0.085]  [-0.051, 0.164]
Observations 7,634 4,164 3,036 1,656
Pseudo R? 0.967 0.923 0.971 0.931

Notes: Poisson Pseudo-Maximum Likelihood estimates. Standard errors (in parentheses) clustered at date level.
All specifications include date and city xhour fixed effects, full interaction terms, and flexible polynomials in the
running variable. *p < 0.10, **p < 0.05, ***p < 0.01.

5.3 Spatial Spillover Effects Across NYC Boroughs

While congestion pricing directly affects only Manhattan’s CBD south of 60th Street, the in-
terconnected nature of urban economies generates spillover effects throughout the metropolitan
area. Figures 4-8 document these spillovers using our demeaning methodology, which removes
pre-treatment differences to isolate causal effects. Each figure compares industry-specific re-
sponses in Manhattan’s congestion zone (blue lines) to different control areas (orange lines),
revealing complex patterns of substitution and complementarity. These figures display the re-
sults of our demeaning methodology across three-digit NAICS industries. Each figure compares
Manhattan’s congestion zone to a different control area using demeaned log visitor counts. Fig-

ure 4, Shows Brooklyn as control and industry panels with demeaned values centered at zero
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pre-treatment. Post-implementation divergence indicates spillover effects. Figure 5, Reveals
moderate spillovers in retail and hospitality using Hudson County as control. Figure 6, Displays
the strongest substitution effects, with clear post-implementation divergence in customer-facing
industries with Upper Manhattan as control. Figure 7, Shows minimal spillovers, consistent
with greater geographic distance with Queens as control. Figure 8, Exhibits negative spillovers
in many sectors, suggesting complementarity with Bronx as control. Each panel shows, Gray
horizontal line at zero (representing the pre-treatment mean), the Red vertical dashed line at
January 5, 2025 (implementation date), Blue lines for congestion zone establishments aggre-
gated at sector level. Orange lines for control area establishments. The Y-axis shows demeaned
log visitors (actual values minus pre-treatment means). We discuss the demeaning methodology
in detail in next section.

Industries with diverging lines post-implementation experience spillover effects, while par-
allel evolution indicates no impact. The heterogeneity across industries with retail and food
services showing large divergences while professional services remain parallel validates our hy-

pothesis about institutional constraints.

5.3.1 The Demeaning Methodology for Visualizing Spillovers

To visualize the heterogeneous spillover effects across industries, we employ a demeaning method-
ology that removes pre-treatment level differences while preserving treatment-induced changes.
This approach is crucial because establishments in Manhattan and control areas have vastly
different baseline activity levels that would obscure treatment effects in raw comparisons.

Our demeaning process follows these steps: For each industry (3-digit NAICS) and location
(congestion zone vs. control area), we calculate the mean log visitor count during the pre-
treatment period (June 2023 to December 2024):

— 1

}/ic,pre = Ti Z log(cht) (3)

pre tEpre

where ¢ indexes industries, ¢ indexes cities/zones, and t indexes time periods. For each

observation, we subtract its group-specific pre-treatment mean:

}/ict = log(}/ict) - Y;c,pre (4)

We then average the demeaned values by date, location, and industry to create the compar-

12



ison plots. This demeaning approach has three key advantages: By subtracting pre-treatment
means rather than time-varying means, any divergence after January 5, 2025, represents the
causal effect of congestion pricing. Industries with vastly different scales (e.g., Food Services
with thousands of visits vs. specialized Manufacturing with dozens) can be compared on the
same plot. The industry-specific panels clearly show which sectors respond to the policy and
which do not.

The resulting graphs show demeaned log visitor counts centered around zero during the pre-
treatment period. Post-implementation divergence between Manhattan’s congestion zone (blue
lines) and control areas (orange lines) indicates spillover effects. Positive divergence suggests
substitution (control areas gaining at Manhattan’s expense), while parallel evolution indicates
no spillover.

The implementation of congestion pricing in Manhattan’s Central Business District (CBD)
below 60th Street creates powerful economic incentives for spatial and sectoral substitution
that manifest as spillover effects across neighboring areas and industry sectors. Our descriptive
analysis using log-transformed visitor data which notably excludes healthcare facilities, gov-
ernment services, and air transportation sectors to focus on discretionary commercial activity
provides compelling evidence of these spillovers, though we acknowledge these patterns repre-
sent correlational rather than fully causal relationships. The exclusion of healthcare, religious,
civic, and government sectors from our analysis is methodologically important, as these sectors
exhibit inelastic demand characteristics that would confound the measurement of price-induced
substitution effects. By focusing on commercial sectors where location choices are more elas-
tic, we can better identify genuine spillover patterns driven by congestion pricing rather than

exogenous demand shocks.

5.4 Heterogeneous Industry Effects

Our difference-in-discontinuities analysis provides robust evidence that Manhattan’s conges-
tion pricing policy successfully induces temporal reallocation of economic activity. However,
The heterogeneous industry responses reveal important distributional consequences obscured
by aggregate analysis presented in Figure 8. Manufacturing and transportation sectors char-
acterized by rigid operational schedules and multi-modal supply chains experience significant
negative effects even during free hours. These industries face binding constraints that prevent

temporal substitution: just-in-time delivery requirements, interstate commerce regulations, and
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coordinated production schedules create adjustment costs that exceed the benefits of avoiding
congestion charges.

Conversely, professional services and hospitality sectors show positive responses, leveraging
temporal flexibility to capitalize on the pricing structure. The discontinuity creates focal points
for economic coordination coffee shops opening earlier, gyms extending hours, professional ser-
vices scheduling client meetings before 5 AM generating agglomeration benefits that amplify
the direct pricing incentives.

Our findings necessitate fundamental revisions to standard congestion pricing theory. The
bottleneck model Arnott et al. ( ) and Small ( ) assumes continuous schedule delay
costs, predicting smooth temporal substitution. We find sharp discontinuities effects at 5AM
but not 4AM or 6AM suggesting threshold models may better capture behavior.The asymmetry
between morning and evening responses challenges the symmetric schedule delay costs assumed
since Vickrey ( ). Evening rigidity likely reflects coordination requirements (family din-
ners, childcare) absent in early morning. Future models should incorporate these institutional
constraints explicitly. Moreover, Concerns about temporal arbitrage undermining revenues De
Palma and Lindsey ( ) and Lindsey ( ) appear unfounded. With substitution at only one
of four boundaries affecting 5.75% of trips, revenue projections remain robust. The knife-edge
nature of responses suggests precise calibration matters more than previously recognized Arnott
and Small ( ). Cities should identify natural flexibility points rather than imposing arbitrary
boundaries. The industry heterogeneity reveals distributional consequences beyond income ef-
fects emphasized in previous work Eliasson and Levander ( ) and Levinson ( ). Service
workers can avoid tolls while professionals cannot, creating unexpected progressivity. The de-
meaned visualizations reveal clear patterns of industry heterogeneity. Customer-facing sectors
with flexible operations (retail, food services) show strong divergence post-implementation,
while sectors with fixed infrastructure or scheduling constraints (professional services, finance)
maintain parallel trends despite the pricing change. This visual evidence validates our hypoth-
esis that institutional constraints dominate individual preferences in determining behavioral
responses to congestion pricing. The sharp temporal boundaries create highly salient price dif-
ferences that may generate larger behavioral responses than equivalent smooth price gradients.
This aligns with recent evidence on increase in speed by 10-15% in the congestion area by Cook
et al. ( ). The divergence between aggregated and disaggregated effects highlights the im-

portance of distributional analysis in policy evaluation. While aggregate efficiency improves,
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sector-specific losses may require complementary policies subsidies for affected industries, in-

vestment in goods movement infrastructure, or temporal zoning flexibility.

6 Conclusion

This study leverages Manhattan’s congestion pricing implementation to provide causal evidence
on how temporal price discontinuities affect urban economic activity. Using a difference-in-
discontinuities design comparing Manhattan to Boston, we identify a 5.75% increase in visits
during free hours at the 5 AM weekday threshold demonstrating successful load-shifting but
through mechanisms distinct from theoretical predictions.

Our analysis yields three principal findings with direct policy relevance. First, behavioral
responses concentrate exclusively at the morning commute threshold, with insignificant effects
at evening and weekend discontinuities. This asymmetric pattern suggests capacity constraints
during off-peak periods limit temporal substitution, implying that extending discounted hours
may not proportionally increase load-shifting. Second, heterogeneous industry responses reveal
that institutional constraints dominate individual optimization: manufacturing and logistics
sectors experience negative effects even during free hours due to rigid operational requirements,
while professional services successfully exploit temporal flexibility. Third, the divergence be-
tween positive aggregate effects and no impact on median sector highlights critical distributional
consequences while total congestion may decrease, the majority of economic actors bear adjust-
ment costs in terms of decrease in total visitors. These findings challenge standard assump-
tions underlying congestion pricing design. The concentration of effects at a single threshold
contradicts models predicting smooth substitution across time periods. The $9 peak charge in-
duces primarily discrete adjustments at the 5 AM boundary rather than continuous reallocation
throughout discounted periods. For policymakers, this implies that graduated pricing transi-
tions may be less effective than anticipated, as behavioral responses appear to be discontinuous
rather than price-elastic at the margin.

The heterogeneous industry effects have immediate implications for policy design and politi-
cal feasibility. Sectors comprising suggesting broad-based business opposition despite aggregate
benefits. Transport authorities implementing congestion pricing should anticipate these distri-
butional impacts and consider complementary policies: adjustment assistance for constrained

industries, modified commercial vehicle provisions, or temporal exemptions for goods movement.
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The success of professional services and hospitality sectors in adapting suggests that policies fa-
cilitating operational flexibility such as modified zoning for extended hours could enhance overall
effectiveness. Several limitations qualify our findings. The six-month post-implementation win-
dow captures short-run responses but not long-term equilibrium adjustments through firm re-
location or infrastructure adaptation. Manhattan’s unique urban form extreme density, limited
access points, extensive transit may generate larger behavioral responses than less constrained
environments. While Boston provides a credible control for identification, the magnitude of
treatment effects may not generalize to cities with different spatial structures or modal alterna-
tives. Additionally, our reduced-form estimates cannot disentangle welfare implications without
observing trip values or purposes.

Our results contribute to evolving understanding of congestion pricing effectiveness. The
policy successfully reduces peak-period activity, but through concentrated behavioral adjust-
ments at specific thresholds rather than smooth temporal reallocation. As global cities including
London, Singapore, and Stockholm refine their pricing schemes, our evidence suggests that opti-
mal design must account for binding institutional constraints, asymmetric temporal substitution
patterns, and heterogeneous industry impacts.

Future research should examine longer-term adaptation as markets adjust to persistent price
signals. The sharp behavioral responses at the 5 AM threshold may represent temporary coordi-
nation on a focal point that could dissipate as agents learn optimal responses. Alternatively, the
discontinuity may reflect fundamental constraints in urban organization that persist in equilib-
rium. Distinguishing between these possibilities requires extended post-treatment observation
and comparison across multiple cities implementing congestion pricing.

The evidence from Manhattan’s early experience demonstrates that congestion pricing can
achieve meaningful behavioral change and congestion reduction. However, success requires rec-
ognizing that urban transportation systems operate through complex institutional constraints
rather than frictionless individual optimization. Effective policy must work within these con-

straints while creating incentives for their gradual relaxation where economically beneficial.
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Figures
Figure 1: NYC area under Congestion Zone program. All the marked roads in red line are
under congestion zone from January 5th 2025

NYC Congestion Pricing Zone - Jan 2025
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Note: Boundaries are approximate and for illustrative purposes only.

Source: Author used the road map of NYC area from the TIGRIS package in R. Note: Blue dots represent the
entry to the Congestion zones form the tunnels
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Figure 2: Hourly visit patterns comparing Manhattan and Boston (Control). Time series
showing parallel pre-trends and post-implementation divergence at 5AM boundary.

Hourly Visit Patterns: Boston vs Manhattan
Comparing Pre (Jan 1, 2024 - Jan 5, 2025) and Post (Jan 6, 2025 onwards) Periods
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Source: Using balanced-panel for the placekeys (POI) in lower-Manhattan and Boston area, we extracted hourly
visitors count from the weekly foot traffic data from Advan. The Congestion prizing program was implemented
started from January 6th 2025.
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Figure 3: Industry-specific effect at before 5AM (Weekday), before 9AM (Weekend), after 9
PM (Weekday) and after 9 PM (Weekend).
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5 AM (Weekday) 9 AM (Weekend) 9 PM (Weekday) 9 PM (Weekend)
| | i i
Beverage & Tovaco — f————————@—————+ ——e— e e
i i i i
! ] 1 !
Credit & Banking L e e —] —e]
I ' I !
i ] 1 i
Educational Services ’-0—( H !—.—| I-:.—|
i 1 1 i
Clothing Stores ;I—o—} }—o—‘ I—.‘—' I—;—D—|
! ] 1 !
I 1 I I
Food & Beverage Stores e Lo e e
I ] 1 i
i i i i
Company Management |—0—|: H—a—{ I—:—c—| |—:-—|
i i | i
Electronics Stores :}—.—{ I—.w‘—{ }—G—H I—IO—|
| i | |
i 1 1 i
Accommadation o] fed o] aal
i i 1 i
i ] | !
5 Food Services I [L.3] [ e
i ] | i
E ' 1 [ 1
@ Couriers & Messengers —e—i i —e—1 re—i
i ] 1 1
i 1 1 i
Furniture Stores F—e— —e— —— ——
I ] 1 !
| ] | |
Broadcasting —e—j' —e— —e—— —e—
| ] | |
i 1 1 i
Administrative Services e [ o fod
i i 1 i
i i i i
Food Manufacturing —e— F—e—i e e
! ] | i
i ] 1 i
Amusement & Recreation e e —e—11 e
| ] | |
i 1 i |
Gas Stations b - | t - { k T | k - !
i i 1 i
I ] | !
Econamic Programs —e— | —— e ——1
I ] 1 !
| 1 1 i
Buiking Material Stores. —e— —e— ——.] —e—
{ 1 1 1
i ] 1 i
-1.0 -05 0.0 05 05 0.0 05 10 05 0.0 A 0 1

Treatment Effect on Visits
95% confidence intervals shown. Main specification resulls.

Source: Using balanced-panel for the placekeys (POI) in lower-Manhattan and Boston area, we extracted hourly
visitors count from mobile-device location data (Advan). We used NAICS Code - 2017 to identify the sectors.
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Figure 4: Brooklyn and lower-Manhattan, Industry-specific spillover effects across control cities.
Detailed panels showing heterogeneous responses across NAICS industries for each control city
comparison.
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Source: Using balanced-panel for the placekeys (POI) in lower-Manhattan and Brooklyn area, we extracted
weekly visitors count from mobile-device location data (Advan). We used NAICS Code - 2017 to identify the
sectors.
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Figure 5: Husdon County - NJ and lower-Manhattan, Industry-specific spillover effects across
control cities. Detailed panels showing heterogeneous responses across NAICS industries for
each control city comparison.

Congestion Zone vs Hudson_County

Jun Dec Jun Jun Dec Jun Jun Dec n
811 812 2024 2024 2025 2024 2024 2025 2024 2024 2025

Jun Dec Jun Jun Dec Jun Jun Dec Ju Jun Doc Jun Jun Dec Jun
2024 2024 2025 2024 2024 2025 2024 2004 2025 2024 2024 2025 2024 2024 2025

Congestion Zone —— Congestion Zone (Lower Manhattan) —~— Non-congestion zone (Hudson County)

Source: Using balanced-panel for the placekeys (POI) in lower-Manhattan and Hudson County-NJ area, we
extracted weekly visitors count from mobile-device location data (Advan). We used NAICS Code - 2017 to
identify the sectors.
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comparison.

Figure 6: Upper and lower Manhattan, Industry-specific spillover effects across control cities.
Detailed panels showing heterogeneous responses across NAICS industries for each control city
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Source: Using balanced-panel for the placekeys (POI) in lower-Manhattan and Upper-Manhattan area, we ex-
tracted weekly visitors count from mobile-device location data (Advan). We used NAICS Code - 2017 to identify
the sectors.

25



1€eS.

Queen and lower Manhattan, Industry-specific spillover effects across control cit
Detailed panels showing heterogeneous responses across NAICS industries for each control city

Figure 7

comparison.
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Figure 8: Bronx and lower Manhattan, Industry-specific spillover effects across control cities.
Detailed panels showing heterogeneous responses across NAICS industries for each control city

comparison.

Congestion Zone vs Bronx

31 312
050 :
' )
0.25 . é
b —ME ﬁm‘ 4 ‘Tn
0.00 Al 28
ki -v w.w\ AN
0z 1Y bifioh o “?“xﬁyi
Lo | |
. id !
441 442
! 02
025 et "
000 TR 1L 00 fW)f W M‘
i S B 02 X
oz ] 1))
o0s0 ¥ \“." v 04
i
0.75 i 0.6
451 452 453 481
0z N 0z I o i
WRIA ) O il 00 “—,«47 i i
oo ] T o ul‘,‘- OV | ‘JNA '17' iy iV ‘¥
0z PN ! i ! 02 % bR
N s b ' 08 n, Y
o by &1’»"» ;“ 04 wj\ rd ) |
LR 08 ! 09
487 488 491 492 493
025 H 086 05 4
. [ ; !
Loy 02
f/*w“’\a 10 A N, ) s SN
025 f | N 1 s [hidy b o0 '“\K“V““ \%k 000 Wy f \15. i
N [ g 02 ¥ 02 'm i R oo pleriPingl 025 k o
o ¥ W . A T Hoo 5 o5 m.m
f 04 W T kAt
78 if Y e NS 075 i
517 518 519 522
( . e ¥ 02s
A A i, N
1 : LN 4 Lt
on MOy o o f oo SRR o0
A Tk ozs [ 1 02 1 X f
s : 7 1 I [ 02 fA
1A, 050 04 [ !
os W WY es
WY o 0 B
541 551 561 562 611 624
' 04
il A 03 0z : ] 02 . z‘w
Sl N 11y : 02 1 nt el
000 f‘fwf‘; PY | SR hefll 2N hl 00 —k &00 e
fd ,zg W IJT oo LKA e el
. | 00 1Ak A i W W/ L T P\ i f
ozs T PN iyl 02 = i 0o T YR oz I ~ 0% p ST
K 03 A y M ‘ ~ o it
050 WAl & & i{'{ o ﬁuv"'s Foooe R uu"fh 050 Y
T w W, W Y ¥
an o Des
713 721 722 811 812 2024 2024 2025
02 o ; 02 025 : 02 ; s
b i ' Pl N
00 Ay s 7{“ A ] D e '\
Mg o el i e P e T e s
oz Iy Wi oz A » L e P 02 Y i n 02 i
AV WY m
{1t ‘v"v' o N T R,
04 NIR 0.4 LAY N 04 LA 0.4 Lk ¥
wn Dec  dn wn o Dec wn o Dee i wn D wn o Dee i
dps oo a0 dps a0 s soe o s sope o s sope oo s

Congestion Zone —— Congestion Zone (Lower Manhattan) Non-congestion zone (Bronx)

484
04 .
! 02
% -
00 ey iy
1
\ n 0.2
o Wﬁf“‘
I 0.4
08 i
512
04 08
o 04
00 (..
“'u ""Wp 00
02

711
10 i 025
05 L
' 000
00— Moty oty
eV i
08 A 02
10 . 0.50
Jun Dec Jun
224 024 2025

485

){Lf'“ 1} &-f it

S
AN
Nr’

515

ec Jun
2024 2025

Jun
2024
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visitors count from mobile-device location data (Advan). We used NAICS Code - 2017 to identify the sectors.
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Appendix

Table 5: Sample composition and baseline activity across treatment and control areas

Manhattan (CZ) Boston Brooklyn Queens Bronx Upper Manhattan

Sector (NAICS) N Mean SD N Mean SD N Mean SD N Mean SD N Mean SD N Mean SD

‘ Retail Trade ‘
Motor Vehicle (441) 63 9.04 0.22 85 9.39 0.13 145 7.79 0.11 98 7.37 0.11 73 7.15 0.14 45 6.28 0.23
Building Material (442) 119 9.58 0.20 112 9.71 0.24 167 7.85 0.14 112 7.41 0.15 84 6.31 0.15 73 7.36 0.17
Electronics (443) 489 9.77 0.20 298 9.66 0.19 156 7.59 0.12 134 7.55 0.14 98 7.56 0.17 100 8.19 0.15
Food & Beverage (445) 613 10.70  0.17 412 11.10  0.18 312 9.75 0.14 289 9.83 0.11 245 9.30 0.13 391 9.55 0.11
Health & Personal (446) 526 10.60  0.18 287 10.20  0.19 267 9.27 0.11 234 9.67 0.11 187 8.72 0.11 147 9.41 0.12
Clothing Stores (448) 2,807 11.90  0.20 1,847 1230  0.17 489 9.60 0.12 378 9.63 0.13 312 8.99 0.12 619 10.10  0.16
Sporting Goods (451) 673 10.30  0.19 396 10.30  0.20 223 7.73 0.11 189 8.48 0.10 134 6.38 0.15 132 8.47 0.19
General Merch. (452) 8 8.36 0.21 98 9.58 0.14 89 9.12 0.10 8 9.00 0.14 67 7.92 0.12 29 8.16 0.13
Misc Store (453) 778 10.30  0.18 487 10.80  0.21 234 8.29 0.14 189 8.38 0.12 145 7.38 0.11 294 9.10 0.16

‘ Services ‘
Information (511-519) 1,216 8.73 0.20 765 8.51 0.22 289 6.42 0.16 223 6.54 0.17 167 6.78 0.18 345 7.23 0.19
Finance (522-524) 2,627 11.03  0.21 1,623 11.10  0.22 456 7.04 0.15 367 7.92 0.13 289 6.23 0.17 734 8.86 0.16
Real Estate (531) 1,557 11.70  0.21 896 11.90  0.18 567 10.70  0.10 489 10.70  0.12 423 10.20  0.11 722 9.24 0.18
Professional (541) 3,254 12.00 0.21 1,847 11.90 0.21 678 8.08 0.17 534 8.15 0.15 356 7.25 0.20 879 9.94 0.19
Admin Services (561) 560 10.00  0.20 412 11.60  0.21 189 6.82 0.13 178 7.91 0.12 123 6.41 0.22 576 10.00  0.18
Educational (611) 772 11.00  0.17 487 11.20  0.18 423 10.50  0.10 367 10.30  0.12 312 10.90  0.15 310 10.90  0.14

‘ Accommodation & Food ‘
Accommodation (721) 421 10.70  0.18 287 10.60  0.21 189 7.89 0.24 167 8.01 0.17 89 6.82 0.11 165 8.76 0.22
Food Services (722) 3,864 12.30  0.17 2,156 12.70  0.18 1,234 11.10  0.14 1,023 11.30  0.13 789 10.20  0.15 2,004 11.20  0.14

‘ Other Services ‘
Repair & Maint. (811) 943 10.80  0.18 598 11.20  0.19 267 8.84 0.12 234 8.87 0.14 156 7.95 0.16 342 8.98 0.17
Personal (812) 2,059 11.10  0.20 1,284 12.20  0.19 567 9.06 0.14 478 9.59 0.14 367 8.46 0.16 1,191 9.63 0.17

‘ Transportation ‘
Transit (485) 105 9.15 0.17 85 9.91 0.17 78 6.73 0.21 89 8.58 0.16 67 719 0.13 118 9.77 0.14
Transport Support (488) 469 10.10  0.19 298 8.40 0.12 112 6.34 0.12 167 10.20  0.16 98 6.41 0.16 62 8.43 0.14

‘ Manufac s ‘
Food Mfg 88 9.02 0.15 56 8.64 0.21 67 6.84 0.12 56 6.97 0.14 45 6.13 0.16 30 8.43 0.15
Printing 808 10.20  0.21 487 11.00  0.21 189 7.36 0.15 145 7.46 0.14 112 6.56 0.14 295 8.53 0.15
Misc Mf 674 10.50  0.21 412 9.55 0.22 178 7.60 0.13 156 7.69 0.14 134 6.57 0.16 118 8.12 0.17

Total 24,704 10.47 0.19 15,234 10.52 0.19 8,745 8.42 0.14 7,234 861 0.14 5,423 7.89 0.15 10,234 9.32 0.17

Notes: Manhattan (CZ) denotes the Congestion Zone (treatment area south of 60th Street). Upper Manhattan
represents areas north of 60th Street. N = number of establishments. Mean and SD represent log visitors
during baseline period (2024). Excluded sectors: ambulatory health care, hospitals, nursing care, religious
organizations, justice/safety, national security, and air transportation.
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Table 6: Regression Estimates for hourly visitors by Weekend and Weekday Cutoffs

Dependent var.

Weekend

‘Weekday

9PM 9AM

9PM

Unique visitor

5AM

Manhattan x Post 0.0032 -0.0054 0.0196 0.0485***
(0.0289)  (0.0249) (0.0177) (0.0173)
Free hours x Post 0.0208 0.0175 0.0227 -0.1464**
(0.0592)  (0.0253) (0.0296) (0.0243)
Post x Running -0.0059 0.0123**  -0.0268*** 0.0036
(0.0087)  (0.0060) (0.0064) (0.0037)
Manhattan x Free hours x Post 0.0069 0.0083 -0.0253 0.0575**
(0.0621) (0.0332) (0.0356) (0.0268)
Free hours x Post x Running -0.0277 -0.0118 -0.0127 -0.0066
(0.0379)  (0.0095) (0.0209) (0.0090)
Manhattan x Post x Running 0.0036 0.0007 0.0198*** -0.0100**
(0.0103)  (0.0066) (0.0065) (0.0042)
Manhattan x Free hours x Post x Running  0.0223 0.0059 0.0078 0.0131
(0.0444)  (0.0122) (0.0252) (0.0092)
Fized Effects
Date Yes Yes Yes Yes
Hour x City Yes Yes Yes Yes
Observations 1,656 3,036 4,164 7,634
Squared Correlation 0.93191 0.96706 0.92135 0.96889
Pseudo R? 0.92970 0.97052 0.92245 0.96681
BIC 545,370.8 801,388.6 1,547,551.9 3,176,518.2

Notes: Manhattan, is 1 if the POI is located in the congestion prizing zone, 0 otherwise. Post, is equal to 1 if
the date is later than January 5th 2025. Free Hour, is equal to 1 if the visit hour is before the congestion
prizing starts for morning cut-off and after the congestion zone pricing ends for the evening cut-off, 0 otherwise.
Standard errors in parentheses. Significance levels: ***p < 0.01, **p < 0.05, *p < 0.10. The Standard errors are

clustered at the date.
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Figure 9: Correlation between MTA’s vehicle entery data and visitor’s from mobile-device data
on weekend and weekdays

c ion: MTA Entries vs i Visits
Weekdays Weekends

R=0.83"**

Day Type
S Weekday
- Weekond

Log(Total Establishment Visits)

7 7

85 90 95 100 90 95 100 105

105
Log(Total MTA Entries)

Source: Author used geolocations of the POIs to identify the congestion zone area in NYC from the TIGRIS
package in R and MTA data from the website.
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