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Abstract

We provide the first causal evidence that congestion pricing induces asymmetric tempo-

ral substitution exclusively at specific pricing boundaries. Using New York City’s January

2025 implementation and high-frequency establishment-level mobility data, we employ a

Difference-in-Discontinuities design testing multiple potential thresholds. We find a statisti-

cally significant 5.75% temporal shift only at the 5AM weekday boundary (p < 0.05), with

precisely estimated null effects at all other transitions including both weekend boundaries.

This sharp concentration at a single threshold robust to bandwidth selection and alternative

treatment date reveals that temporal substitution requires precise alignment between pric-

ing boundaries and latent schedule flexibility. Despite limited behavioral change at only one

of four pricing boundaries, non-linear traffic flow relationships translate this 5.75% shift into

substantial congestion relief. These findings challenge standard congestion pricing models

that assume symmetric schedule delay costs and suggest that program effectiveness depends

primarily on trip elimination and modal substitution rather than temporal redistribution.
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1 Introduction

Traffic congestion imposes enormous costs on the U.S. economy. Americans lose 8.8 billion

hours and $190 billion annually sitting in traffic, with particularly severe impacts in dense urban

areas1. In Manhattan, average traffic speeds fell to just 7.1 mph by 2024 slower than walking

pace2. Economists have long advocated congestion pricing as the solution, dating back to Pigou

(1932), yet political opposition prevented any U.S. city from implementing it until now. On

January 5, 2025, New York City launched the nation’s first congestion pricing program, charging

vehicles entering Manhattan below 60th Street with time-varying tolls designed to shift travel

away from peak hours. This provides a rare opportunity to examine how road pricing affects

travel behavior in a major U.S. metropolitan area3.

This policy change raises three key questions. First, will commuters actually shift when they

travel to avoid peak prices, or are work schedules too rigid? Second, do behavioral responses

differ across industries can retail workers adjust their schedules more easily than office workers?

Third, what happens to surrounding areas do they benefit from less through-traffic, or do they

suffer when economic activity moves elsewhere?

We answer these questions using high-frequency data on visits to individual businesses using

mobile-location data. Our empirical approach exploits the sharp timing and geographic bound-

aries created by the toll policy to identify causal effects. We examine both whether trips shift

to different times of day and whether economic activity shifts to neighboring areas outside the

toll zone.

Our main findings challenge common assumptions about congestion pricing. Despite the

large price difference between peak and off-peak hours, we find that trips shift to earlier times

at only one boundary: 5AM on weekdays, where 5.75% of trips move to before 5AM to avoid the

toll. Surprisingly, we see no response at 9PM on weekdays or at any weekend boundary. This

pattern holds even when we test different boundary times, suggesting that schedule flexibility

exists only at very specific times likely when some workers start their shifts before standard

business hours begin.

We also document important spillover effects to neighboring areas. Upper Manhattan (north

of 60th Street, outside the toll zone) sees more visitors after the policy starts, especially to retail

1INRX 2024 report - INRX is an analytics company working on road and traffic analysis.
2Using taxi and for-hire vehicle speed data analyzed by former city Traffic Commissioner Sam “Gridlock Sam”

Schwartz revealed that average speeds in the Central Business District dropped below 7 miles per hour for 2024.
3Congestion Zone Program - NYC
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stores and restaurants, suggesting people substitute to these closer destinations. In contrast,

businesses in New Jersey show parallel declines to those in the toll zone, indicating that these ar-

eas are economically linked rather than substitutes. Brooklyn and Queens show mixed patterns:

retail gains some traffic while professional services decline.

These results matter for both policy and theory. For policy, These findings have immedi-

ate policy relevance as cities from Los Angeles to London debate congestion pricing designs.

The limited temporal shifting suggests revenue projections may be conservative if they assume

widespread schedule changes. The industry differences reveal unexpected distributional effects:

service workers with flexible schedules can avoid tolls, while office workers with fixed schedules

cannot. The geographic spillovers indicate that neighboring jurisdictions may need their own

policy responses to address displaced activity.

For economic theory, the asymmetric responses and threshold effects suggest that standard

models assuming smooth optimization may miss important features of commuting behavior.

Institutional constraints work start times, school schedules, business hours—appear to bind at

specific times rather than allowing continuous adjustment. Understanding these constraints is

crucial as more cities consider congestion pricing to address traffic, pollution, and climate goals.

The remainder of this paper proceeds as follows. Section 2 describes the policy details and

literature. Section 3 explains the our data and how we have used it. In Section 4 we presents

our empirical strategy using the geographic and temporal variation considering cut-off around

the congestion window. Section 5 shows the main results on temporal substitution and spatial

spillovers. Section 6 discusses policy implications.

2 Background and Literature Review

On 5 January 2025, New York City launched the nation’s first congestion pricing program.

The NYC - Metropolitan Transportation Authority Central Business District Tolling Program

charges vehicles entering Manhattan south of 60th Street represented in Figure 1, with a sophis-

ticated time-varying structure. During peak hours (5AM-9PM weekdays, 9AM-9PM weekends),

passenger vehicles with E-ZPass4 pay $9, while off-peak hours cost $2.25 a 300% price differ-

ential designed to incentivize temporal substitution. The program includes nuanced features:

4E-ZPass is an electronic toll collection system used on toll roads, bridges, and tunnels in several U.S. states.
It allows drivers to pay tolls automatically through a pre-paid account linked to a transponder in the vehicle,
enabling travel through designated lanes without stopping for cash payments.
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higher rates for vehicles without E-ZPass ($13.50 peak), differentiated charges by vehicle size

(trucks pay up to $21.60), per-trip fees for taxis ($0.75) and rideshares ($1.50), daily caps to

limit burden on frequent users, and crossing credits for tolled tunnels. The MTA projects that

this will reduce traffic by 17% while generating $15 billion for transit improvements5

The economic theory of congestion pricing originates from the fundamental insight Pigou

(1932) that road users impose externalities through their contribution to traffic congestion.

Vickrey (1969) formalized this intuition in the bottleneck model, demonstrating how time-

varying tolls could achieve efficient allocation of scarce road capacity. Subsequent theoretical

developments of Arnott et al. (1990) and Small (1992) incorporated schedule delay costs into

the framework, modeling commuter decisions as a trade-off between travel time costs, early

arrival penalties (β), late arrival penalties (γ) and monetary tolls:

C(t) = α · t+ β ·max(0, t∗ − t) + γ ·max(0, t− t∗) + τ(t) (1)

A critical assumption underlying these models is that schedule delay costs are symmetric

and continuous throughout the day, implying smooth temporal substitution patterns in response

to price variations. However, this theoretical prediction has remained largely untested due to

data limitations and identification challenges in real-world implementations.

The empirical literature on congestion pricing has focused predominantly on aggregate out-

comes rather than behavioral mechanisms. London’s congestion charge, implemented in 2003,

reduced traffic volumes by 15-20% Green et al. (2020) and Leape (2006), generated measurable

improvements in air quality Tang and van Ommeren (2022) and reduced private car ownership

Morton and Ali (2025). Stockholm’s trial period and subsequent permanent implementation

showed similar aggregate reductions of 20-22% Börjesson et al. (2012) and Eliasson et al. (2009),

with associated health benefits and road safety documented by Albalate and Fageda (2021) and

Simeonova et al. (2021). Milan’s Area C reduced traffic by approximately 12% while improving

air quality within the charging zone and influences vehicle choice Gibson and Carnovale (2015)

and Moulin and Urbano (2025). Singapore’s long-running electronic road pricing system has

demonstrated price elasticities of demand ranging from -0.2 to -0.3 Olszewski and Xie (2005).

Although these studies establish that congestion pricing reduces aggregate traffic volumes, they

cannot disentangle whether reductions occur through trip elimination, modal substitution, or

5https://congestionreliefzone.mta.info/tolling
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temporal redistribution distinctions crucial for both theoretical understanding and policy de-

sign.

Recent contributions have begun to examine heterogeneous responses to congestion pricing,

although data constraints have limited the scope of analysis. Hall (2018) demonstrates welfare

gains from HOT lanes, but cannot observe the variation at the industry level. Yang et al. (2020)

use Beijing’s license plate restrictions as a quasi-experiment to estimate congestion costs but

lack temporal granularity to identify substitution patterns. Kreindler (2023) provides experi-

mental evidence from Bangalore showing heterogeneous values of time across commuters, while

Hall (2021) develops a theoretical framework for understanding distributional consequences.

However, these studies lack the establishment-level, high-frequency data necessary to identify

specific behavioral mechanisms.

The distributional implications of congestion pricing have generated substantial policy de-

bate, with concerns that tolls may disproportionately burden lower-income travelers Ecola and

Light (2009) and Taylor (2010). Eliasson and Levander (2014) examine equity effects in Stock-

holm, finding that high-income groups pay more in absolute terms but experience larger time

savings. Yet the literature has overlooked industry-level heterogeneity, despite its importance

for understanding incidence and adjustment mechanisms. Professional service workers with

fixed schedules face different constraints than retail or hospitality workers with variable shifts,

yet no study has systematically documented these differences or their implications for policy

effectiveness.

Evidence on spatial spillovers from congestion pricing remains limited and contradictory.

Herzog (2024) finds that London’s congestion charge reduced traffic on non-priced roads lead-

ing into the charging zone, suggesting complementarity between priced and unpriced roads.

Conversely, Gibson and Carnovale (2015) document increased traffic on Milan’s radial roads

outside the pricing zone, indicating substitution. These conflicting findings highlight the need

for systematic analysis across multiple geographic areas within a single metropolitan region to

understand when spillovers are positive versus negative.

Methodologically, the congestion pricing literature has relied primarily on before-after com-

parisons Leape (2006) or synthetic control methods Duranton and Turner (2011) that cannot

separately identify different behavioral margins. Recent advances using regression discontinu-

ity designs have focused on geographic boundaries Fu and Gu (2021) rather than temporal

thresholds where pricing changes occur. The inability to exploit temporal discontinuities has
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prevented researchers from testing fundamental theoretical predictions about schedule flexibility

and temporal substitution.

Our study addresses these gaps through several innovations. First, we provide empirical

evidence that schedule delay costs exhibit fundamental asymmetries not captured in standard

models, with βmorning ̸= βevening and temporal substitution occurring exclusively at morning

boundaries. The finding that effects vanish when shifting the discontinuity by a single hour

reveals threshold effects rather than the smooth substitution patterns predicted by theory. Sec-

ond, using establishment-level data with hourly frequency across three-digit NAICS industries,

we decompose aggregate treatment effects into specific behavioral margins documenting that

temporal substitution affects only 5.75% of trips at one boundary while industry responses

vary by an order of magnitude. Third, we systematically analyze spillover patterns across

five separate jurisdictions (Upper Manhattan, Bronx, Brooklyn, Queen and Hudson County)

within the New York metropolitan area, revealing that complementarity versus substitutabil-

ity depends predictably on both geographic proximity and industry characteristics. Fourth,

our Difference-in-Discontinuities design exploiting both temporal and spatial variation provides

cleaner identification than previous approaches, while our descriptive analysis with demeaning

methodology transparently isolates treatment effects from pre-existing heterogeneity. These

contributions advance both theoretical understanding and practical knowledge necessary for

optimal congestion pricing design.

3 Data

We use a balanced panel dataset high-frequency mobility patterns (foot-traffic) at establish-

ment. We also used characteristics like NAICS code (2017) to identify the sectors. The primary

data source is anonymized mobile-device location data from Advan, tracking visits to com-

mercial establishments (POI) using GPS-pings. Many studies in public health Andersen et al.

(2023), Dave et al. (2021), Goolsbee and Syverson (2021), and Mongey et al. (2021), marketing

Banerjee et al. (2021) and Hou and Poliquin (2023) or urban transportation Coleman et al.

(2022), Goodspeed et al. (2021), and Wang et al. (2022) have extensively used these datasets

to understand the policy effects. We use this data from 1st July 2023 through 30th June 2025

provides 18 months of pre-treatment and 6 months of post-treatment observations.

The sample comprises approximately 24,700 continuously operating establishments within
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Manhattan’s Congestion Relief Zone (south of 60th Street) and over 46,000 comparable estab-

lishments across control cities. Control locations were selected based on similar urban density,

economic composition, and transportation infrastructure: Boston (primary control with 15,234

establishments), Brooklyn (8,745), Queens (7,234), Bronx (5,423), Upper Manhattan above

60th Street (10,234), and Hudson County, NJ.

Industry classification uses three-digit NAICS codes, covering 72 industries with establish-

ments ranging from single-digit counts in specialized manufacturing to over 3,800 in food ser-

vices. Table 1 presents the distribution of establishments across key sectors, along with baseline

activity levels. We exclude industries with inherent schedule rigidities unrelated to congestion

pricing (ambulatory health care, hospitals, nursing care, religious organizations, justice/safety,

national security, and air transportation).

Table 1: Sample composition and baseline activity across treatment and control areas

Manhattan (CZ) Boston
Sector (NAICS) N Mean (SD) N Mean (SD)

Retail Trade
Motor Vehicle (441) 63 9.04 (0.22) 85 9.39 (0.13)
Food & Beverage (445) 613 10.70 (0.17) 412 11.10 (0.18)
Clothing Stores (448) 2,807 11.90 (0.20) 1,847 12.30 (0.17)

Services
Finance (522-524) 2,627 11.03 (0.21) 1,623 11.10 (0.22)
Professional (541) 3,254 12.00 (0.21) 1,847 11.90 (0.21)

Accommodation & Food
Food Services (722) 3,864 12.30 (0.17) 2,156 12.70 (0.18)

Total 24,704 10.47 (0.19) 15,234 10.52 (0.19)

Notes: Manhattan (CZ) denotes the Congestion Zone (treatment area south of 60th Street). N = number of
establishments. Mean and SD represent log visitors during baseline period (2024). Full table with all sectors
and control areas available in Appendix 5.

4 Empirical Strategy

Our identification strategy combines regression discontinuity and difference-in-differences ap-

proaches to create a Difference-in-Discontinuities (DiD-RD) framework. This design is necessary

because a simple regression discontinuity at toll boundaries would conflate the causal effect of

congestion pricing with natural discontinuities in activity patterns. For instance, even without

congestion pricing, we might observe increased visits at 5AM as businesses naturally open for

the day. The observed jump at any boundary therefore contains both a natural component and,
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potentially, a pricing-induced component that we aim to isolate.

The core insight of our approach is that while both Manhattan and control cities experi-

ence natural discontinuities in activity at certain hours, only Manhattan’s discontinuities should

change after congestion pricing implementation. By comparing how the magnitude of disconti-

nuities evolves in Manhattan relative to control cities, we isolate the causal effect of the pricing

policy. This triple difference across time of day, across cities, and across implementation peri-

ods provides our identifying variation. In Figure 2, we present a visual temporal evolution of

establishment visits across four panels showing similar weekday and weekend patterns before

and after implementation.

We estimate the following equation using Poisson Pseudo-Maximum Likelihood:

E[Ychdt|X] = exp

(
β1Dcpt + f(Rh) +

∑
k

γkXk + δdt + θch + ϵchdt

)
(2)

The outcome variable Ychdt represents unique visitor counts for city c at hour h on date d in

period t. We use counts rather than logs because many establishments record zero visits during

overnight hours, and dropping these observations would create selection bias. The exponential

link function ensures predicted values remain positive while accommodating the multiplicative

nature of the effects we study.

The key identifying variable is the triple interaction Dcpt = Mc×Fh×Pt, where Mc indicates

whether the establishment is in Manhattan’s congestion zone, Fh denotes free or discounted toll

hours, and Pt marks the post-implementation period. For the 5AM boundary analysis, Fh

equals one for hours 0-4 when tolls are $2.25 and zero for hours 5-10 when tolls are $9.00.

The coefficient β1 on this triple interaction identifies our causal effect of interest the change

in visits during free hours relative to peak hours, in Manhattan relative to control cities, after

implementation relative to before.

A critical component of our specification is the flexible control function f(Rh) for the running

variable, which measures the distance from the threshold hour. For the 5AM boundary, Rh =

h − 5, ranging from -5 to +5 across our analysis window. We include not only the running

variable itself but also its interactions with all components of the triple difference. This rich

set of interactions serves several purposes. The interaction of the running variable with the

Manhattan indicator allows the two cities to have different hourly patterns as Manhattan might

naturally see steeper increases in morning activity than Boston. The interaction with the free
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hours indicator permits different slopes on either side of the discontinuity, accommodating any

natural kink in activity patterns at 5AM. The interaction with the post period allows these

hourly patterns to evolve over time for reasons unrelated to congestion pricing.

Our specification includes two sets of high-dimensional fixed effects that absorb potential

confounders. Date fixed effects δdt control for any shocks common to all cities on a given

day, including weather events, holidays, national economic conditions, or day-of-week patterns.

These ensure that we compare Manhattan and control cities within the same day, eliminating

concerns about temporal confounders. City-by-hour fixed effects θch absorb all time-invariant

differences in hourly patterns across locations. Manhattan’s 4AM activity level might per-

manently differ from Boston’s due to differences in urban density, industrial composition, or

cultural factors. These fixed effects ensure we identify our effect from changes over time rather

than cross-sectional differences.

5 Main Results and Discussion

Table 2 presents our primary results examining temporal substitution at each pricing boundary.

The specification includes the full set of interactions and controls described in the empirical

strategy.

Table 2: Temporal substitution effects at congestion pricing boundaries

Weekdays Weekends
Specification 5AM 9PM 9AM 9PM

($2.25→$9.00) ($9.00→$2.25) ($2.25→$9.00) ($9.00→$2.25)

Manhattan × Free × Post 0.0575** -0.0253 0.0083 0.0069
(Triple Interaction) (0.0268) (0.0356) (0.0332) (0.0621)
95% CI [0.005, 0.110] [-0.095, 0.045] [-0.058, 0.074] [-0.115, 0.129]
Implied elasticity -0.024* 0.014 -0.003 -0.004

Observations 7,634 4,164 3,036 1,656
Pseudo R² 0.967 0.922 0.971 0.930

Notes: Poisson Pseudo-Maximum Likelihood estimates. Standard errors (in parentheses) clustered at date level.
All specifications include date and city×hour fixed effects, full interaction terms, and flexible polynomials in the
running variable. *p < 0.10, **p < 0.05, ***p < 0.01.

The results reveal a striking asymmetry in temporal responses. The 5AM weekday boundary

shows a statistically significant 5.75% increase in overnight visits (p=0.032), while all other

boundaries yield economically small and statistically insignificant effects. The 95% confidence

intervals rule out effects larger than ±7.5% at evening and weekend boundaries, providing
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precise evidence of null effects.

5.1 Robustness to Alternative Discontinuity Points

The exceptional nature of the 5AM effect becomes clear when shifting the discontinuity by

one hour. Table 3 shows that at 6AM despite facing an identical $6.75 price jump temporal

substitution vanishes completely (β = -0.0007, SE = 0.0204). Similarly, testing 4AM yields no

significant effect (β = 0.0302, SE = 0.0449). This sharp threshold indicates temporal substi-

tution occurs only within extremely narrow windows where pricing incentives align with latent

schedule flexibility.

Table 3: Testing alternative pricing boundaries

Actual One Hour One Hour
Boundary Earlier Later

Weekday Morning ($2.25→$9.00)
Time tested 5AM 4AM 6AM
Triple interaction 0.0575** 0.0302 -0.0007
Standard error (0.0268) (0.0449) (0.0204)
Result Significant Not significant Precisely zero

Weekday Evening ($9.00→$2.25)
Time tested 9PM 8PM 10PM
Triple interaction -0.0253 0.0070 0.0026
Standard error (0.0356) (0.0302) (0.0258)
Result Not significant Not significant Not significant

Notes: Each coefficient from separate regression with full controls. *p < 0.10, **p < 0.05, ***p < 0.01.

5.2 Placebo Test for Pre-existing Trends

To validate our identifying assumption that the temporal substitution patterns emerged specif-

ically in response to the congestion pricing policy, we conduct a placebo test by artificially

shifting the policy implementation date to earlier periods when no actual policy change oc-

curred. Table 4 presents results from re-estimating our main specification using placebo event

dates six months and one year prior to the actual implementation. The coefficient on our triple

interaction term (Manhattan × Free hours × Post-policy) remains positive but becomes sta-

tistically insignificant across all time boundaries examined. For instance, at the 5AM weekday

boundary, the coefficient drops from 0.033 in our main specification to 0.0142 (SE = 0.0298)

when using the placebo date of September 5th 2024. This pattern preserved sign but loss of
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statistical significance is consistent across all four temporal boundaries, with none of the placebo

coefficients achieving even marginal significance at the 10% level. These null findings serve two

important purposes. First, they demonstrate the absence of differential pre-trends in temporal

substitution behavior between Manhattan and our control cities prior to the actual policy imple-

mentation, supporting the parallel trends assumption underlying our difference-in-discontinuity

design. Second, the reduction in magnitude and precision of the estimates provides reassurance

that our main results are not artifacts of secular trends in travel patterns or other confounding

temporal dynamics. The fact that the treatment effect emerges precisely when the congestion

pricing policy takes effect, and not before, strengthens our causal interpretation of the observed

temporal displacement as a behavioral response to the price differential at zone boundaries.

Table 4: Temporal substitution effects at congestion pricing boundaries if the date on event is
September 5th 2024

Weekdays Weekends
Specification 5AM 9PM 9AM 9PM

($2.25→$9.00) ($9.00→$2.25) ($2.25→$9.00) ($9.00→$2.25)

Manhattan × Free × Post 0.0333 0.0215 0.0186 0.0564
(Triple Interaction) (0.0252) (0.0373) (0.0338) (0.0547)
95% CI [-0.016, 0.083] [-0.052, 0.095] [-0.048, 0.085] [-0.051, 0.164]

Observations 7,634 4,164 3,036 1,656
Pseudo R² 0.967 0.923 0.971 0.931

Notes: Poisson Pseudo-Maximum Likelihood estimates. Standard errors (in parentheses) clustered at date level.
All specifications include date and city×hour fixed effects, full interaction terms, and flexible polynomials in the
running variable. *p < 0.10, **p < 0.05, ***p < 0.01.

5.3 Spatial Spillover Effects Across NYC Boroughs

While congestion pricing directly affects only Manhattan’s CBD south of 60th Street, the in-

terconnected nature of urban economies generates spillover effects throughout the metropolitan

area. Figures 4-8 document these spillovers using our demeaning methodology, which removes

pre-treatment differences to isolate causal effects. Each figure compares industry-specific re-

sponses in Manhattan’s congestion zone (blue lines) to different control areas (orange lines),

revealing complex patterns of substitution and complementarity. These figures display the re-

sults of our demeaning methodology across three-digit NAICS industries. Each figure compares

Manhattan’s congestion zone to a different control area using demeaned log visitor counts. Fig-

ure 4, Shows Brooklyn as control and industry panels with demeaned values centered at zero
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pre-treatment. Post-implementation divergence indicates spillover effects. Figure 5, Reveals

moderate spillovers in retail and hospitality using Hudson County as control. Figure 6, Displays

the strongest substitution effects, with clear post-implementation divergence in customer-facing

industries with Upper Manhattan as control. Figure 7, Shows minimal spillovers, consistent

with greater geographic distance with Queens as control. Figure 8, Exhibits negative spillovers

in many sectors, suggesting complementarity with Bronx as control. Each panel shows, Gray

horizontal line at zero (representing the pre-treatment mean), the Red vertical dashed line at

January 5, 2025 (implementation date), Blue lines for congestion zone establishments aggre-

gated at sector level. Orange lines for control area establishments. The Y-axis shows demeaned

log visitors (actual values minus pre-treatment means). We discuss the demeaning methodology

in detail in next section.

Industries with diverging lines post-implementation experience spillover effects, while par-

allel evolution indicates no impact. The heterogeneity across industries with retail and food

services showing large divergences while professional services remain parallel validates our hy-

pothesis about institutional constraints.

5.3.1 The Demeaning Methodology for Visualizing Spillovers

To visualize the heterogeneous spillover effects across industries, we employ a demeaning method-

ology that removes pre-treatment level differences while preserving treatment-induced changes.

This approach is crucial because establishments in Manhattan and control areas have vastly

different baseline activity levels that would obscure treatment effects in raw comparisons.

Our demeaning process follows these steps: For each industry (3-digit NAICS) and location

(congestion zone vs. control area), we calculate the mean log visitor count during the pre-

treatment period (June 2023 to December 2024):

Ȳic,pre =
1

Tpre

∑
t∈pre

log(Yict) (3)

where i indexes industries, c indexes cities/zones, and t indexes time periods. For each

observation, we subtract its group-specific pre-treatment mean:

Ỹict = log(Yict)− Ȳic,pre (4)

We then average the demeaned values by date, location, and industry to create the compar-
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ison plots. This demeaning approach has three key advantages: By subtracting pre-treatment

means rather than time-varying means, any divergence after January 5, 2025, represents the

causal effect of congestion pricing. Industries with vastly different scales (e.g., Food Services

with thousands of visits vs. specialized Manufacturing with dozens) can be compared on the

same plot. The industry-specific panels clearly show which sectors respond to the policy and

which do not.

The resulting graphs show demeaned log visitor counts centered around zero during the pre-

treatment period. Post-implementation divergence between Manhattan’s congestion zone (blue

lines) and control areas (orange lines) indicates spillover effects. Positive divergence suggests

substitution (control areas gaining at Manhattan’s expense), while parallel evolution indicates

no spillover.

The implementation of congestion pricing in Manhattan’s Central Business District (CBD)

below 60th Street creates powerful economic incentives for spatial and sectoral substitution

that manifest as spillover effects across neighboring areas and industry sectors. Our descriptive

analysis using log-transformed visitor data which notably excludes healthcare facilities, gov-

ernment services, and air transportation sectors to focus on discretionary commercial activity

provides compelling evidence of these spillovers, though we acknowledge these patterns repre-

sent correlational rather than fully causal relationships. The exclusion of healthcare, religious,

civic, and government sectors from our analysis is methodologically important, as these sectors

exhibit inelastic demand characteristics that would confound the measurement of price-induced

substitution effects. By focusing on commercial sectors where location choices are more elas-

tic, we can better identify genuine spillover patterns driven by congestion pricing rather than

exogenous demand shocks.

5.4 Heterogeneous Industry Effects

Our difference-in-discontinuities analysis provides robust evidence that Manhattan’s conges-

tion pricing policy successfully induces temporal reallocation of economic activity. However,

The heterogeneous industry responses reveal important distributional consequences obscured

by aggregate analysis presented in Figure 8. Manufacturing and transportation sectors char-

acterized by rigid operational schedules and multi-modal supply chains experience significant

negative effects even during free hours. These industries face binding constraints that prevent

temporal substitution: just-in-time delivery requirements, interstate commerce regulations, and
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coordinated production schedules create adjustment costs that exceed the benefits of avoiding

congestion charges.

Conversely, professional services and hospitality sectors show positive responses, leveraging

temporal flexibility to capitalize on the pricing structure. The discontinuity creates focal points

for economic coordination coffee shops opening earlier, gyms extending hours, professional ser-

vices scheduling client meetings before 5 AM generating agglomeration benefits that amplify

the direct pricing incentives.

Our findings necessitate fundamental revisions to standard congestion pricing theory. The

bottleneck model Arnott et al. (1990) and Small (1992) assumes continuous schedule delay

costs, predicting smooth temporal substitution. We find sharp discontinuities effects at 5AM

but not 4AM or 6AM suggesting threshold models may better capture behavior.The asymmetry

between morning and evening responses challenges the symmetric schedule delay costs assumed

since Vickrey (1969). Evening rigidity likely reflects coordination requirements (family din-

ners, childcare) absent in early morning. Future models should incorporate these institutional

constraints explicitly. Moreover, Concerns about temporal arbitrage undermining revenues De

Palma and Lindsey (2004) and Lindsey (2004) appear unfounded. With substitution at only one

of four boundaries affecting 5.75% of trips, revenue projections remain robust. The knife-edge

nature of responses suggests precise calibration matters more than previously recognized Arnott

and Small (1998). Cities should identify natural flexibility points rather than imposing arbitrary

boundaries. The industry heterogeneity reveals distributional consequences beyond income ef-

fects emphasized in previous work Eliasson and Levander (2014) and Levinson (2010). Service

workers can avoid tolls while professionals cannot, creating unexpected progressivity. The de-

meaned visualizations reveal clear patterns of industry heterogeneity. Customer-facing sectors

with flexible operations (retail, food services) show strong divergence post-implementation,

while sectors with fixed infrastructure or scheduling constraints (professional services, finance)

maintain parallel trends despite the pricing change. This visual evidence validates our hypoth-

esis that institutional constraints dominate individual preferences in determining behavioral

responses to congestion pricing. The sharp temporal boundaries create highly salient price dif-

ferences that may generate larger behavioral responses than equivalent smooth price gradients.

This aligns with recent evidence on increase in speed by 10-15% in the congestion area by Cook

et al. (2025). The divergence between aggregated and disaggregated effects highlights the im-

portance of distributional analysis in policy evaluation. While aggregate efficiency improves,
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sector-specific losses may require complementary policies subsidies for affected industries, in-

vestment in goods movement infrastructure, or temporal zoning flexibility.

6 Conclusion

This study leverages Manhattan’s congestion pricing implementation to provide causal evidence

on how temporal price discontinuities affect urban economic activity. Using a difference-in-

discontinuities design comparing Manhattan to Boston, we identify a 5.75% increase in visits

during free hours at the 5 AM weekday threshold demonstrating successful load-shifting but

through mechanisms distinct from theoretical predictions.

Our analysis yields three principal findings with direct policy relevance. First, behavioral

responses concentrate exclusively at the morning commute threshold, with insignificant effects

at evening and weekend discontinuities. This asymmetric pattern suggests capacity constraints

during off-peak periods limit temporal substitution, implying that extending discounted hours

may not proportionally increase load-shifting. Second, heterogeneous industry responses reveal

that institutional constraints dominate individual optimization: manufacturing and logistics

sectors experience negative effects even during free hours due to rigid operational requirements,

while professional services successfully exploit temporal flexibility. Third, the divergence be-

tween positive aggregate effects and no impact on median sector highlights critical distributional

consequences while total congestion may decrease, the majority of economic actors bear adjust-

ment costs in terms of decrease in total visitors. These findings challenge standard assump-

tions underlying congestion pricing design. The concentration of effects at a single threshold

contradicts models predicting smooth substitution across time periods. The $9 peak charge in-

duces primarily discrete adjustments at the 5 AM boundary rather than continuous reallocation

throughout discounted periods. For policymakers, this implies that graduated pricing transi-

tions may be less effective than anticipated, as behavioral responses appear to be discontinuous

rather than price-elastic at the margin.

The heterogeneous industry effects have immediate implications for policy design and politi-

cal feasibility. Sectors comprising suggesting broad-based business opposition despite aggregate

benefits. Transport authorities implementing congestion pricing should anticipate these distri-

butional impacts and consider complementary policies: adjustment assistance for constrained

industries, modified commercial vehicle provisions, or temporal exemptions for goods movement.
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The success of professional services and hospitality sectors in adapting suggests that policies fa-

cilitating operational flexibility such as modified zoning for extended hours could enhance overall

effectiveness. Several limitations qualify our findings. The six-month post-implementation win-

dow captures short-run responses but not long-term equilibrium adjustments through firm re-

location or infrastructure adaptation. Manhattan’s unique urban form extreme density, limited

access points, extensive transit may generate larger behavioral responses than less constrained

environments. While Boston provides a credible control for identification, the magnitude of

treatment effects may not generalize to cities with different spatial structures or modal alterna-

tives. Additionally, our reduced-form estimates cannot disentangle welfare implications without

observing trip values or purposes.

Our results contribute to evolving understanding of congestion pricing effectiveness. The

policy successfully reduces peak-period activity, but through concentrated behavioral adjust-

ments at specific thresholds rather than smooth temporal reallocation. As global cities including

London, Singapore, and Stockholm refine their pricing schemes, our evidence suggests that opti-

mal design must account for binding institutional constraints, asymmetric temporal substitution

patterns, and heterogeneous industry impacts.

Future research should examine longer-term adaptation as markets adjust to persistent price

signals. The sharp behavioral responses at the 5 AM threshold may represent temporary coordi-

nation on a focal point that could dissipate as agents learn optimal responses. Alternatively, the

discontinuity may reflect fundamental constraints in urban organization that persist in equilib-

rium. Distinguishing between these possibilities requires extended post-treatment observation

and comparison across multiple cities implementing congestion pricing.

The evidence from Manhattan’s early experience demonstrates that congestion pricing can

achieve meaningful behavioral change and congestion reduction. However, success requires rec-

ognizing that urban transportation systems operate through complex institutional constraints

rather than frictionless individual optimization. Effective policy must work within these con-

straints while creating incentives for their gradual relaxation where economically beneficial.
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Figures

Figure 1: NYC area under Congestion Zone program. All the marked roads in red line are
under congestion zone from January 5th 2025

Source: Author used the road map of NYC area from the TIGRIS package in R. Note: Blue dots represent the
entry to the Congestion zones form the tunnels
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Figure 2: Hourly visit patterns comparing Manhattan and Boston (Control). Time series
showing parallel pre-trends and post-implementation divergence at 5AM boundary.

Source: Using balanced-panel for the placekeys (POI) in lower-Manhattan and Boston area, we extracted hourly
visitors count from the weekly foot traffic data from Advan. The Congestion prizing program was implemented
started from January 6th 2025.
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Figure 3: Industry-specific effect at before 5AM (Weekday), before 9AM (Weekend), after 9
PM (Weekday) and after 9 PM (Weekend).

Source: Using balanced-panel for the placekeys (POI) in lower-Manhattan and Boston area, we extracted hourly
visitors count from mobile-device location data (Advan). We used NAICS Code - 2017 to identify the sectors.
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Figure 4: Brooklyn and lower-Manhattan, Industry-specific spillover effects across control cities.
Detailed panels showing heterogeneous responses across NAICS industries for each control city
comparison.

Source: Using balanced-panel for the placekeys (POI) in lower-Manhattan and Brooklyn area, we extracted
weekly visitors count from mobile-device location data (Advan). We used NAICS Code - 2017 to identify the
sectors.
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Figure 5: Husdon County - NJ and lower-Manhattan, Industry-specific spillover effects across
control cities. Detailed panels showing heterogeneous responses across NAICS industries for
each control city comparison.

Source: Using balanced-panel for the placekeys (POI) in lower-Manhattan and Hudson County-NJ area, we
extracted weekly visitors count from mobile-device location data (Advan). We used NAICS Code - 2017 to
identify the sectors.
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Figure 6: Upper and lower Manhattan, Industry-specific spillover effects across control cities.
Detailed panels showing heterogeneous responses across NAICS industries for each control city
comparison.

Source: Using balanced-panel for the placekeys (POI) in lower-Manhattan and Upper-Manhattan area, we ex-
tracted weekly visitors count from mobile-device location data (Advan). We used NAICS Code - 2017 to identify
the sectors.
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Figure 7: Queen and lower Manhattan, Industry-specific spillover effects across control cities.
Detailed panels showing heterogeneous responses across NAICS industries for each control city
comparison.

Source: Using balanced-panel for the placekeys (POI) in lower-Manhattan and Queen area, we extracted weekly
visitors count from mobile-device location data (Advan). We used NAICS Code - 2017 to identify the sectors.
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Figure 8: Bronx and lower Manhattan, Industry-specific spillover effects across control cities.
Detailed panels showing heterogeneous responses across NAICS industries for each control city
comparison.

Source: Using balanced-panel for the placekeys (POI) in lower-Manhattan and Bronx area, we extracted weekly
visitors count from mobile-device location data (Advan). We used NAICS Code - 2017 to identify the sectors.
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Appendix

Table 5: Sample composition and baseline activity across treatment and control areas

Manhattan (CZ) Boston Brooklyn Queens Bronx Upper Manhattan

Sector (NAICS) N Mean SD N Mean SD N Mean SD N Mean SD N Mean SD N Mean SD
Retail Trade
Motor Vehicle (441) 63 9.04 0.22 85 9.39 0.13 145 7.79 0.11 98 7.37 0.11 73 7.15 0.14 45 6.28 0.23
Building Material (442) 119 9.58 0.20 112 9.71 0.24 167 7.85 0.14 112 7.41 0.15 84 6.31 0.15 73 7.36 0.17
Electronics (443) 489 9.77 0.20 298 9.66 0.19 156 7.59 0.12 134 7.55 0.14 98 7.56 0.17 100 8.19 0.15
Food & Beverage (445) 613 10.70 0.17 412 11.10 0.18 312 9.75 0.14 289 9.83 0.11 245 9.30 0.13 391 9.55 0.11
Health & Personal (446) 526 10.60 0.18 287 10.20 0.19 267 9.27 0.11 234 9.67 0.11 187 8.72 0.11 147 9.41 0.12
Clothing Stores (448) 2,807 11.90 0.20 1,847 12.30 0.17 489 9.60 0.12 378 9.63 0.13 312 8.99 0.12 619 10.10 0.16
Sporting Goods (451) 673 10.30 0.19 396 10.30 0.20 223 7.73 0.11 189 8.48 0.10 134 6.38 0.15 132 8.47 0.19
General Merch. (452) 78 8.36 0.21 98 9.58 0.14 89 9.12 0.10 78 9.00 0.14 67 7.92 0.12 29 8.16 0.13
Misc Store (453) 778 10.30 0.18 487 10.80 0.21 234 8.29 0.14 189 8.38 0.12 145 7.38 0.11 294 9.10 0.16
Services
Information (511-519) 1,216 8.73 0.20 765 8.51 0.22 289 6.42 0.16 223 6.54 0.17 167 6.78 0.18 345 7.23 0.19
Finance (522-524) 2,627 11.03 0.21 1,623 11.10 0.22 456 7.04 0.15 367 7.92 0.13 289 6.23 0.17 734 8.86 0.16
Real Estate (531) 1,557 11.70 0.21 896 11.90 0.18 567 10.70 0.10 489 10.70 0.12 423 10.20 0.11 722 9.24 0.18
Professional (541) 3,254 12.00 0.21 1,847 11.90 0.21 678 8.08 0.17 534 8.15 0.15 356 7.25 0.20 879 9.94 0.19
Admin Services (561) 560 10.00 0.20 412 11.60 0.21 189 6.82 0.13 178 7.91 0.12 123 6.41 0.22 576 10.00 0.18
Educational (611) 772 11.00 0.17 487 11.20 0.18 423 10.50 0.10 367 10.30 0.12 312 10.90 0.15 310 10.90 0.14
Accommodation & Food
Accommodation (721) 421 10.70 0.18 287 10.60 0.21 189 7.89 0.24 167 8.01 0.17 89 6.82 0.11 165 8.76 0.22
Food Services (722) 3,864 12.30 0.17 2,156 12.70 0.18 1,234 11.10 0.14 1,023 11.30 0.13 789 10.20 0.15 2,004 11.20 0.14
Other Services
Repair & Maint. (811) 943 10.80 0.18 598 11.20 0.19 267 8.84 0.12 234 8.87 0.14 156 7.95 0.16 342 8.98 0.17
Personal (812) 2,059 11.10 0.20 1,284 12.20 0.19 567 9.06 0.14 478 9.59 0.14 367 8.46 0.16 1,191 9.63 0.17
Transportation
Transit (485) 105 9.15 0.17 85 9.91 0.17 78 6.73 0.21 89 8.58 0.16 67 7.19 0.13 118 9.77 0.14
Transport Support (488) 469 10.10 0.19 298 8.40 0.12 112 6.34 0.12 167 10.20 0.16 98 6.41 0.16 62 8.43 0.14
Manufacturing
Food Mfg (311) 88 9.02 0.15 56 8.64 0.21 67 6.84 0.12 56 6.97 0.14 45 6.13 0.16 30 8.43 0.15
Printing (323) 808 10.20 0.21 487 11.00 0.21 189 7.36 0.15 145 7.46 0.14 112 6.56 0.14 295 8.53 0.15
Misc Mfg (339) 674 10.50 0.21 412 9.55 0.22 178 7.60 0.13 156 7.69 0.14 134 6.57 0.16 118 8.12 0.17
Total 24,704 10.47 0.19 15,234 10.52 0.19 8,745 8.42 0.14 7,234 8.61 0.14 5,423 7.89 0.15 10,234 9.32 0.17

Notes: Manhattan (CZ) denotes the Congestion Zone (treatment area south of 60th Street). Upper Manhattan
represents areas north of 60th Street. N = number of establishments. Mean and SD represent log visitors
during baseline period (2024). Excluded sectors: ambulatory health care, hospitals, nursing care, religious
organizations, justice/safety, national security, and air transportation.
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Table 6: Regression Estimates for hourly visitors by Weekend and Weekday Cutoffs

Weekend Weekday

9PM 9AM 9PM 5AM
Dependent var. Unique visitor

Manhattan × Post 0.0032 -0.0054 0.0196 0.0485∗∗∗

(0.0289) (0.0249) (0.0177) (0.0173)
Free hours × Post 0.0208 0.0175 0.0227 -0.1464∗∗∗

(0.0592) (0.0253) (0.0296) (0.0243)
Post × Running -0.0059 0.0123∗∗ -0.0268∗∗∗ 0.0036

(0.0087) (0.0060) (0.0064) (0.0037)
Manhattan × Free hours × Post 0.0069 0.0083 -0.0253 0.0575∗∗

(0.0621) (0.0332) (0.0356) (0.0268)
Free hours × Post × Running -0.0277 -0.0118 -0.0127 -0.0066

(0.0379) (0.0095) (0.0209) (0.0090)
Manhattan × Post × Running 0.0036 0.0007 0.0198∗∗∗ -0.0100∗∗

(0.0103) (0.0066) (0.0065) (0.0042)
Manhattan × Free hours × Post × Running 0.0223 0.0059 0.0078 0.0131

(0.0444) (0.0122) (0.0252) (0.0092)

Fixed Effects
Date Yes Yes Yes Yes
Hour × City Yes Yes Yes Yes
Observations 1,656 3,036 4,164 7,634
Squared Correlation 0.93191 0.96706 0.92135 0.96889
Pseudo R2 0.92970 0.97052 0.92245 0.96681
BIC 545,370.8 801,388.6 1,547,551.9 3,176,518.2

Notes: Manhattan, is 1 if the POI is located in the congestion prizing zone, 0 otherwise. Post, is equal to 1 if
the date is later than January 5th 2025. Free Hour, is equal to 1 if the visit hour is before the congestion
prizing starts for morning cut-off and after the congestion zone pricing ends for the evening cut-off, 0 otherwise.
Standard errors in parentheses. Significance levels: ∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.10. The Standard errors are
clustered at the date.

29



Figure 9: Correlation between MTA’s vehicle entery data and visitor’s from mobile-device data
on weekend and weekdays

Source: Author used geolocations of the POIs to identify the congestion zone area in NYC from the TIGRIS
package in R and MTA data from the website.
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